LeetCode #707 Design Linked List
Problem
Design your implementation of the linked list. You can choose to use the singly linked list or the doubly linked list. A node in a singly linked list should have two attributes: val
and next
. val
is the value of the current node, and next
is a pointer/reference to the next node. If you want to use the doubly linked list, you will need one more attribute prev
to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.
Implement these functions in your linked list class:
- get(index) : Get the value of the
index
-th node in the linked list. If the index is invalid, return-1
. - addAtHead(val) : Add a node of value
val
before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. - addAtTail(val) : Append a node of value
val
to the last element of the linked list. - addAtIndex(index, val) : Add a node of value
val
before theindex
-th node in the linked list. Ifindex
equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. - deleteAtIndex(index) : Delete the
index
-th node in the linked list, if the index is valid.
Example:
MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1, 2); // linked list becomes 1->2->3
linkedList.get(1); // returns 2
linkedList.deleteAtIndex(1); // now the linked list is 1->3
linkedList.get(1); // returns 3
Note:
- All values will be in the range of
[1, 1000]
. - The number of operations will be in the range of
[1, 1000]
. - Please do not use the built-in LinkedList library.
Solution
Basic linked list manipulations. Here we propose solutions about implementing single linked list and double linked list.
Complexity
We only analysis time complexity here.
single linked list
get
: O(n) for traversing whole list for given node
addAtHead
: O(1) because we have head already
addAtTail
: O(n) due to find the tail node, but it will be O(1) if tail node is given
addAtIndex
: O(n) or O(1), the same as addAtTail
. It takes O(n) for finding node at index and its previous node.
deleteAtIndex
: O(1) if we’d like to delete head node, otherwise O(n)
double linked list
get
: O(n) for traversing whole list for given node
addAtHead
: O(1) because we have head already
addAtTail
: O(n) due to find out node before tail node, but it will be O(1) if we already have tail
addAtIndex
: O(n) or O(1), the same as addAtTail
. But we only have to find node at index
deleteAtIndex
:
- O(1) if we’d like to delete head node
- Otherwise, O(n) if node doesn’t give and O(1) if node is given